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1. Introduction

The most basic, sometimes implicit, assumption of statistical or econometric models
is that the model is correct in the sense that interdependencies in the population are
indeed in accordance with the model. For example in the context of mean regressions,
where the object of interest is the conditional expectation function (CEF), adequacy of
the regression model means that the a priori assumptions on the (parametric) form are
indeed correct. If this is not so, the scope of the interpretation of estimation results is
limited—if not impossible. While it is true that the linear least squares projection of an
outcome variable y on the explanatory variables x is the best linear predictor of y given
x for any CEF, if we specify our regression model to be linear, but the CEF is, in fact, not
linear, we cannot go beyond this result. However, if we specify the regression model
correctly, the usual interpretation of the estimation results (i.e. the expectation of y if x
takes on a specific value x0) will be correct. This understanding raises the need of testing
the validity of the assumed model—the specification.

The aim of this paper is investigate the applicability of bootstrap methods that are
expected to yield reliable inference for a particular type of consistent specification tests.

The literature on specification tests is rich. Our focus in this paper is on the so-called
non-smoothing consistent specification tests exemplified by Bierens (1982). While these
kind of test are consistent in the sense that their power converges to one (as n → ∞)
for all departures from the model of the null hypothesis, they generally have unknown,
or complicated asymptotic null distributions which must be simulated by bootstrap.
Due to the DGP-dependent nature of their null distributions, the bootstrapped null
distributions might yield undesirable levels for these tests.

Thus, we investigate by means of simulation whether we can make more reliable
inferential decisions by using the double bootstrap (Beran, 1988) (otherwise known
as iterated bootstrap, Hall (1992)) and the fast double bootstrap (FDB, Davidson and
MacKinnon (2007)) instead of the “single” residual or wild bootstrap. While the double
bootstrap is theoretically expected to yield refinements to the order in the error in
rejection probabilities (ERP, the difference in the actual and nominal level of the test), its
computation is somewhat costly. The fast double bootstrap overcomes this problem and,
at the same time, is expected to retain the reliability of the double bootstrap.

Based on our simulations under various experimental setups considering Bierens’s
test (Bierens, 1982) and the more recent Escanciano test (Escanciano, 2006) employing
the residual and wild bootstrap procedures, we argue for the following theoretical and
practical conclusions:

1. The Rademacher distribution (Davidson and Flachaire, 2008) for the wild bootstrap
should not be used to single bootstrap the investigated tests.

2. The two point distribution proposed by Mammen (1993) for the wild bootstrap is
an adequate “omnibus” method in the sense that it performs reasonably well for
all considered bootstrap procedures (single, double, and fast double bootstrap). Its
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performance is especially good under heteroskedasticity compared to the residual
and Rademacher versions.

3. The Rademacher distribution for the wild bootstrap can outperform the Mammen-
wild bootstrap especially with a non-symmetric error distribution.

4. The double bootstrap should not be used in small and moderate sized samples,
because its performance (in terms of levels) is often worse than that of both the fast
double bootstrap and the single bootstrap.

5. The fast double bootstrap can generally be advised to be used for refining inference
over the single bootstrap. Especially if it is coupled with the appropriate wild
distribution. As a thumb rule, with the Mammen-wild method, the FDB performs
no worse than the single bootstrap, and it performs observably better under the
practically important case of heteroskedasticity.

While the above points should be interpreted with care especially because of numerical
inaccuracies, we made all attempt to give conclusions that stem from relatively stable
patterns.

We believe that the last two points are of significant practical importance, especially
because, to our knowledge, no paper has applied the double and fast double bootstrap
for consistent specification tests. More generally, our contribution to the literature is
two-fold: (1) it adds to the literature on specification testing by investigating the gains
from applying the double bootstrap and fast double bootstrap methods to (theoretically)
popular non-smoothing consistent specification tests; (2) it adds to the ongoing process of
discovery related to the usefulness of the fast double bootstrap by providing simulation
results on a testing problem that has not been considered in the existing FDB simulations.

The structure of the paper is as follows. Section 2. sets up the hypothesis testing
problem, briefly surveys the literature of consistent specification tests focusing on the
non-smoothing type and details the tests that we are focusing on in this paper. Section
3. introduces the bootstrap shortly and gives exposition of the double and fast double
bootstrap procedures including their practical implementation. These sections help
motivating the paper and fix ideas. Section 4. contains our specific contributions: it
details the experimental setup and leads the reader systematically up to the conclusions
stated above. Note, that most of the figures and tables are contained in Appendix A.
Besides detailing the main results, we also demonstrate a power curve analysis and a
robustness experiment. Finally, Section 5. concludes.

2. Speci�cation tests

Let (Z,A, µ) be a probability space and let (y, x) be an R×Rk random vector defined
on it. Our focus in this paper is on mean regressions, where the object of interest is the
conditional expectation function (CEF) m(x0) = E [y | x = x0] for any x0 ∈ Rk. Since we
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generally have no knowledge of the explicit form of this mean regression function, we
have to estimate it from a sequence (xi, yi)

n
i=1 of realizations that are ideally generated

from the original (x, y) (e.g. the sequence is just the n-copy of (x, y)). While it is possible
to estimate consistently a rich family of functions through nonparametric methods, it
is more desirable to have a correctly specified parametric model, since such a model
can produce better estimates than crude non-parametric methods (Li and Racine, 2006).
Further, a well-specified parametric model is more tractable and easier to interpret.

To this end, we specify a parameter space B ⊆ Rk that indexes a class of functions
f : Rk × B → R that we define. That is, we impose restrictions on the functions from
Rk to R, and each function that satisfies these restrictions are indexed with a parameter
β ∈ B.

Definition 2.1. A specification is a pair S := (B, f ) such that B ⊆ Rk and f : Rk × B→ R.
A model is the collection

MS := { f (·, β) : β ∈ B }. (1)

For example, in the standard linear regression we assume that f (x, β) = x′β, B = Rk,
and the collection of these functions for all β ∈ B is the relevant model. If we have the
specification S = (B, f ), then the main question is: Can we find the true regression
function based on this specification? Is the true regression function (at least almost
surely) equal to the CEF for some β0 ∈ B?

It is, however, very unlikely that from the space of functions we can just specify a
subset that indeed contains the right one. In fact, the likelihood of this is zero. If we,
however, have some information about the problem at hand, then we might specify a
model and see “how wrong” this specification is. It can be the case that the specified
model is so close to the true one that the difference is statistically indistinguishable.
Formally, the hypotheses of the specification testing problem are the following (e.g.
Bierens (1982)):

H0 : Pr [ f (x, β0) = m(x)] = 1 for some β0 ∈ B, (2)

H1 : Pr [ f (x, β) = m(x)] 6= 1 for all β ∈ B. (3)

Defining u ≡ y− f (x, β0) it is easy to see that the above formulation is equivalent to the
following hypotheses:

H0 : E [u | x] = 0 a.s., for some β0 ∈ B, (4)

H1 : E [u | x] 6= 0 on a set with positive measure, ∀β ∈ B. (5)

If the specification is correct in the sense of H0, then any suitable consistent estimator
that takes values in B will find the correct β0.

To fix definitions, consider the probability space (Z,A, µ) and hypothetical testing
problem for a parameter θ0 ∈ Θ. θ0 is a population parameter that we are interested in.
We test H0 : θ0 ∈ Θ0 for some restriction, against H1 : θ0 ∈ Θ1, where Θ0 ∪Θ1 ⊆ Θ and
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Θ0 ∩Θ1 = ∅. We observe the sample z1, . . . , zn. A test statistic is a measurable mapping
Tn : Rn → R. A test is a decision rule that rejects or not rejects H0 for a given value of
the test statistic. A test can be viewed as a random mapping from the target space of T
to, say, the set { 0, 1 }. The power of a test is the probability of rejecting the null given
that θ0 is indeed in Θ1. We say that a test is consistent if its power converges to 1 for all
θ ∈ Θ1 as the sample size converges to infinity.

The literature on specification tests is rich, but the widely applied specification tests
(e.g. Hausman’s) are not necessarily consistent in the sense defined above. Starting
from Bierens (1982), the focus turned on consistent specification tests. These tests can
be put roughly in two categories: (1) smoothing tests that employ some nonparametric
(smoothing) estimator related to the true CEF in their construction (Härdle and Mammen,
1993; Zheng, 1996; Hsiao, Li, and Racine, 2007); (2) non-smoothing tests. The first type of
tests usually have tractable asymptotic null distributions, but the curse of dimensionality
makes their use impractical for multiple regressors and small sample sizes. These
are the reasons why our focus in this paper is on consistent specification tests of the
non-smoothing type.

In the following we investigate a version of the original Bierens Integrated Moment
Condition Test (ICM, Bierens (1982)), and the more recent Escanciano test (Escanciano,
2006). The idea of Bierens is to use a parametrized function family H(x, t) for some
t ∈ T ⊆ Rk and test whether E [uH(x, t)] = 0. If H(·, t) and T together form a
sufficiently rich family of functions, then whenever E [u | x] 6= 0, there will be a t0 ∈ T
such that E [uH(x, t0)] 6= 0.1 The concrete test statistics that we consider are:

1. The Bierens test (Bierens, 1982):

η̂b =
∫

Rk

∣∣∣∣∣
Z(t)︷ ︸︸ ︷

n

∑
i=1

1
n
(yi − f (xi, β̂)) exp(ιt′xi)

∣∣∣∣∣
2

φ(t)dt (6)

=
1
n ∑

i
∑

j
ûiûj exp

(
−1

2
‖xi − xj‖2

)
, (7)

where φ(·) is the standard normal density, t ∈ Rk and ι =
√
−1. As was shown by

Bierens and Ploberger (1997), the asymptotic null distribution of this test statistic
is:

η0
b =

∞

∑
i=1

λiγi, (8)

where γi
iid∼ χ2. The weight λi-s are the increasingly ordered eigenvalues of

the covariance operator E [Z(t1)Z(t2)], and thus they are dependent on the data
1A deeper reason for why Bierens-type non-smoothing tests are consistent, and why they are so for many

suitable choices of H was illuminated by Stinchcombe and White (1998). In their words, the usefulness
of a family of functions for consistent specification testing depends on its comprehensive revealability, see
Definition 3.2. of Stinchcombe and White (1998, p. 302).
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generating process: the distribution of (yi, xi)
n
i=1 and the true model. This is the

feature that necessitates the use of more reliable bootstrap inference procedures.2

2. The Escanciano test (Escanciano, 2006):

η̂e =
∫

Rk

(
1
2

n

∑
i=1

ûi1
[
t′xi 6 τ

])2

F̂t(dτ)dt (9)

=
1
n2 ∑

i
∑

j
ûiûj

∑
k

∫
Rk

1
[
t′xi 6 t′xk

]
1
[
t′xj 6 t′xk

]
dt

 , (10)

where F̂t is the empirical CDF of the projected t′x. The computation of the integral
in the k-sum is discussed by Escanciano (2006, p. 1051). The test η̂e is shown to be
consistent, but its asymptotic null distribution suffers from DGP-dependency—just
like Bierens’s test. Hence in this case, again, it is natural to employ more reliable
bootstrap methods for inference.

3. Bootstrap methods

The method of (parametric) bootstrap is widely known among econometricians. Theo-
retical and practical expositions are many. For comprehensible theoretical treatments of
the bootstrap we refer the reader to the books of Hall (1992) and Shao and Tu (1995). For
a more eclectic and highly readable exposition, see Horowitz (2001).

In this paper we focus on wild and residual bootstrap, because the consistency of
these bootstrap methods for the Bierens ICM test was shown by Dominguez (2005).

Let a specification S = (B, f ) be given so that we have the regression model

y = f (x, β) + u.

Let β̂ be a consistent estimator of some β0 ∈ B. For a sample (yi, xi)
n
i=1 calculate

ûi = yi − f (xi, β̂), i = 1, . . . , n,

the estimated residuals. Let (u∗j )
n
j=1 be an n-sample drawn with replacement from

(ûi)
n
i=1. Set

y∗j = xj β̂ + u∗j , j = 1, . . . , n, (11)

and calculate the desired test statistic based on these data and β̂∗ that is estimated from
the newly generated data (y∗j , xj)

n
j=1. Note, that in the case of the residual bootstrap we

do not resample x.

2Note, that λi-s can be consistently estimated, see Theorem 3. of Carrasco and Florens (2000, p. 806).
However, the reliable bootstrap methods, in principle, yield refinements over that estimate too.
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Instead of creating u∗j -s with replacement from ûi-s, the wild bootstrap generates uw
j =

ûjε j, j = 1, . . . , n for some drawing from distributions ε j that are mutually independent
and independent of the basic data. It is desirable that E

[
ε j
]
= 0, and E

[
ε2] = E

[
ε3] = 1.

Mammen (1993) recommends using a two-point distribution,

ε(1) =

{
1−
√

5
2 with prob. p = (5 +

√
5)/10

1+
√

5
2 with prob. 1− p

. (12)

He also suggests two continuous distributions, the better of which theoretically is

ε(2) = (δ1 + ξ1/
√

2) · (δ2 + ξ2/
√

2)− δ1δ2, (13)

where ξ1 and ξ2 are random variables with independent N (0, 1) distributions, δ1 =√
3/4 +

√
17/12 and δ2 =

√
3/4−

√
17/12. Davidson and Flachaire (2008) recommend

using the two-point distribution given by

ε(3) =

{
−1 with prob. p = 0.5

1 with prob. p = 0.5
. (14)

Our investigation below shows that the choice of the wild bootstrap procedure (Mam-
men-wild, Rademacher-wild) does matter for the performance of the tests that we
consider.

3.1. Inference re�nements

Let us define a test statistic pivotal if its distribution does not depend on the data
generating process. If only the asmyptotic distribution is pivotal, then we call a statistic
asymptotically pivotal. Define further the error in rejection probability (ERP) as the difference
between the nominal level of a test and the actual rejection probability based on the
simulated null distribution of the test statistic. From Edgeworth expansions it can be
shown that if a test statistic is not asymptotically pivotal, we generally cannot gain in
the order of the ERP over asymptotic approximations with the use of the bootstrap (see
Table 1, and formally Hall (1992)). This might mean that in finite samples, statistical
inference based on bootstrap may yield severely incorrect levels.3 Using analogous
Edgeworth expansion arguments, Beran (1988) and Beran (1987) suggested the use of
double bootstrap (also known as iterative bootstrap). The idea behind the papers of
Beran is to apply a function h to the statistic of interest such that the order of ERP of
h(Tn) is smaller than that of Tn. In particular, the (asymptotic) null CDF of Tn (denote
it G) is a good candidate, since G(Tn) is less heavily dependent on the data generating
process, and the distribution of G(Tn), the prepivoted statistic is U (0, 1) asymptotically
under general circumstances. In particular, it means that G(Tn) is asymptotically pivotal.

3Even though the order is a purely asymptotic concept, where we are not sure after what “sufficiently
large” N index the result holds, there seems to be the heuristic understanding, that we can hope for
better finite sample behavior if the order of the ERP is smaller.
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Table 1: Error in rejection probabilities

Method Pivot Not pivot

Asymptotics O
(

n−
1
2

)
O
(

n−
1
2

)
Bootstrap O

(
n−1) O

(
n−

1
2

)
Double Bootstrap O

(
n−

3
2

)
O
(
n−1)

According to Beran (1988).

Prepivoting Tn with the exact finite sample G or its consistent estimator Gn yields
ERP of lower order than asymptotics and simple bootstrap. This is demonstrated in
Table 1 which compares the ERP-s of tests based on asymptotics, bootstrap and double
bootstrap respectively for pivotal and non-pivotal test statistics.

As can be seen, double bootstrap provides a refinement regardless of the pivotal
or non-pivotal nature of Tn. Along the same arguments, iterating this prepivoting
procedure yields, in principle, refinements in each step, i.e. tests based on G2

n(G1
n(Tn))

will have smaller ERP-s than those based on G1
n(Tn), etc. However, whether iterat-

ing this procedure until infinity yields exact rejection probabilities is not clear. While
computationally infeasible, this leaves open a possibly interesting theoretical question.

The implementation of the double bootstrap for a given level α consists of the following
steps (see also Beran (1988)):

1. Calculate T̂, the estimated test statistic from the original data.

2. Draw B1 bootstrap resamples according to the bootstrap method of choice. Calcu-
late T∗i the test statistic derived from the bootstrap sample for each i = 1, . . . , B1.

3. For each B1 bootstrap sample, repeat the chosen sampling procedure and draw B2

resamples. Calculate T∗∗j for each j = 1, . . . , B2, and calculate

Zi =
1
B2

B2

∑
j=1

1

[
T∗∗j 6 T∗i

]
i = 1, . . . , B1.

4. Look for the 1− α-th quantile of the dataset (Zi)
B1
i=1 and denote it Q∗∗. Look for

the Q∗∗-th quantile of the set (T∗)B1
i=1. Denote this quantile Q∗.

5. Reject H0 if T̂ > Q∗.

In the case of a Monte-Carlo simulation, repeat the above procedure M times. Practically
it is advisable to set M, B1 and B2 sufficiently large.
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3.2. Fast, reliable inference

For complex statistics the double bootstrap might be too costly to compute. If, however,
it is possible to find a method that is fast and yields equally reliable inference, then we are
in a win-win situation. According to the suggestion of Davidson and MacKinnon (2007),
it is often enough to use only one double bootstrap resample per bootstrap samples.
That is, set B2 = 1. However, it leads to a slight modification of the procedure described
in the previous subsection. This fast double bootstrap procedure (FDB) is best viewed
from a p-value perspective and it proceeds as follows (Davidson and MacKinnon, 2007):

1. Calculate T̂, the estimated test statistic from the original data.

2. Draw B1 bootstrap resamples according to the bootstrap method of choice. Calcu-
late T∗i , the test statistic derived from the bootstrap sample for each i = 1, . . . , B1.
Calculate

p∗ =
1
B1

B1

∑
i=1

1
[
T∗i > T̂

]
.

3. For each B1 bootstrap sample, repeat the chosen sampling procedure and draw
B2 = 1 resamples. Calculate T∗∗j for each j = 1, . . . , B1, and look for the 1− p∗-th

quantile of the dataset (T∗∗j )B1
j=1. Denote it Q∗∗.

4. Calculate

p∗∗ =
1
B1

B1

∑
i=1

1[T∗i > Q∗∗] ,

and reject H0 if p∗∗ < α.

The slight departure from the fast double bootstrap procedure is that in the case of
the FDB we do not directly estimate the distribution of T∗ with the numerous double
bootstrap samples, each corresponding to only one bootstrap first-phase sample.

The theoretical background for the FDB procedure is not well-developed. The as-
sumptions in Giacomini, Politis, and White (2013) are sufficiently general that we can
conclude that the FDB procedure is consistent if the bootstrap (and the double bootstrap)
is consistent. However, an important question is, whether the FDB yields refinements
similar to the double bootstrap. What can be shown is, that whenever G1(T∗), the
distribution of T∗, is independent of G2(T∗∗), the distribution of T∗∗, the fast double
bootstrap is equivalent to the double bootstrap.

4. Experiments

The goal of experiments was to investigate the small sample properties of the bootstrap,
double bootstrap and fast double bootstrap applied to two types of specification tests.
The first one is Bierens’s ICM test as given by Equation (7), and the second, more recent
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one is the Escanciano test given by Equation (10). The common property of these tests is
that the asymptotic null distribution must be simulated, and is DGP-dependent. This
makes the use of the more reliable inferential methods of the double and fast double
bootstrap natural, perhaps even necessary.

The employed bootstrap method is that of the residual bootstrap and the wild boot-
strap as it was described in Section 3. In particular, we used the discrete and continuous
suggestion of Mammen (1993), and the Rademacher distribution suggested by Davidson
and Flachaire (2008). Besides being a popular method, it is important that the wild
bootstrap is shown to be consistent for the ICM type of tests by Dominguez (2005).
Hence, based on the discussion above, we can conclude that the double bootstrap and
the fast double bootstrap are consistent too. Note that for a given method all subsequent
bootstrap draws (double or fast double bootstrap) were carried out using the same
method.

In this section we first describe the experimental setting, then we detail our main
results and perform some robustness experiments that further support our main results.

4.1. Experimental design

The basic DGP that we employ is the following:

yi = 0.5x1i + 0.5x2i + 0.5x3i − 1.5x4i + ui, (15)

where ui = ε i ∼ N (0, 1) in the homoskedastic case, or ui = x1iε i in the heteroskedastic
case. In order to model a (left) skewed distribution, we also used ui = 1/3(ε i + ξi − 4),
with ξi ∼ χ2(4). The PDF of this random variable can be seen in Figure 1. It has zero
mean and unit variance.

Figure 1: Skewed distribution
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All xij-s were drawn from U (−
√
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3), which yields unit variance. The reason why
there are four explanatory variables in this DGP is that for small sample sizes the higher
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number of explanatory variables give clear advantage to non-smoothing tests over
smoothing tests. The number of Monte-Carlo replications (M) was 1000, and the basic
number of bootstrap samples was B1 = 199 and B2 = 150 for the first bootstrap phase
and the double bootstrap phase respectively. Sample sizes (n) that we investigated were
40, 50, 75, 100, and 500 for some simulations.

4.2. Main results

The first observation that we could conclude from the experiments was that for both
tests, all three bootstrapping procedures are consistent, i.e. they yield correct levels for
sufficiently large sample sizes. This is illustrated in Figure 2 above. The plot shows the
actual versus the nominal level of the Bierens test using the wild methodology. The
sample size is 500 for the single bootstrap and the fast double bootstrap, and 100 for
the double bootstrap. These bootstrap procedures yield correct sizes if their plots are
very close to being uniform on [0, 1]. Indeed, this is what we see in Figure 2, and the
conclusion is robust to all examined specifications, including the Escanciano test. As
regards tendency, the bootstrap procedures tend to yield uniformly better sizes as n
grows.

For small and moderate sample sizes, however, we can find moderate underrejection
for the single bootstrap procedure. This is illustrated in Figure 3. Note, that except for
Figure 3, all figures are contained in Appendix A, starting from page 20. The upper row
of these plots displays the actual vs. the nominal level of the Bierens test for the wild
methodology. The left column is in the case of homoskedastic data, the right is in the
case of heteroskedastic data.

To capture the behavior of these procedures in a more relevant way, the lower row of
Figure 3 plots the size discrepancy (actual minus nominal level) against the actual level
truncated to the interval [0, 0.2]. While, as we have already remarked, the single bootstrap
yields moderate underrejection, the fast double bootstrap performs remarkably well,
especially in the heteroskedastic case (right column). The double bootstrap, however,
performs unexpectedly badly seriously overrejecting on the truncated interval. Based
on our theoretical discussion, this presents a puzzle.

As regards robustness, the qualitative nature of the results do not change by using the
skewed error distribution. In the plots we have chosen n = 75, because this seems to
display patterns in the clearest manner. Varying the sample size yields no qualitative
changes besides what is implied by consistency, i.e. for larger sample size the lines
gradually get closer to the uniform CDF.

The overview of the behavior of the Escanciano test is contained in Figure 6, whose
structure is the same as that of Figure 3. The test performs slightly worse than the Bierens
test, the undesirable behavior of both the single and the double bootstrap is reinforced
both in the case of heteroskedasticity, and in the case of homoskedasticity. However, the
fast double bootstrap yields the same good levels as in the case of Bierens test. For more
precise comparison, see Table 2, which contains the mean absolute discrepancy of the
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Figure 3: Bierens test simulation
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fast double procedure and demonstrates that the FDB performs equally well in the case
of both tests calculated for 48 levels on [0, 0.2].4

As regards the behavior of the double bootstrap, it must be noted that the validity of
Edgeworth expansions, on which the theory of asymptotic refinement is based, is not
always guaranteed. This is especially so in the case of discrete distributions, a prime
example of which in the outcome of the resampling rule of Mammen’s wild bootstrap
(Equation (12) on page 7). Using the continuous distribution given in Equation (12),
however, provides only worse results. Besides, the Rademacher distribution (Equation
(14)), which is discrete, outperforms the basic wild bootstrap (see below), hence it is not
straightforward to give a reason why the double bootstrap performs unexpectedly.

4We believe that it depends on the problem at hand whether under- or overrejection is more “costly”. By
taking absolute differences we treat both deviations from the nominal level equally.
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Table 2: Fast double bootstrap performance

Test (n = 75) Homosked. Heterosked.

Bierens 0.0083 (0.004) 0.0044 (0.004)

Escanciano 0.0042 (0.003) 0.0088 (0.005)

Mean absolute size discrepancy on [0, 0.2] (sd in parantheses)

Along this line of reasoning, we have tried using the plain residual bootstrap method-
ology instead of the wild bootstrap in the hope of utilizing more on the asymptotic
considerations.5 In the case of homoskedasticity the residual bootstrap yielded very
precise results for small nominal levels as it is demonstrated in Figure 7 for both tests
and for all procedures. In the case of heteroskedasticity, however, the residual bootstrap
performs very weakly, which is expected given that the residual bootstrap assumes an
iid sample. These conclusions apply to the case of the non-symmetric error distribution
too.

When using the Rademacher distribution, the gains from using the double or the
fast double bootstrap over the single bootstrap are remarkable for both tests. In figure
8 we report simulation results for the smallest sample size (n = 40) with the skewed
distribution to demonstrate this fact in the (a priori) worst case.6 Note that in the size
discrepancy plot, the line corresponding to the single bootstrap disappears, because it
exits the bound we have prescribed in order to concentrate on the other two methods.
The pattern extends to the Escanciano test, and for heteroskedasticity.

This strong finding raises the question whether we should prefer using the Rade-
macher version of the wild bootstrap for (and only for) the double and fast double
bootstrap procedures, for both tests. Tables 3, 4 and 5 report the mean absolute size
discrepancies (and standard deviations) for the Bierens test for all available sample sizes
with homoskedastic, heteroskedastic and skewed data respectively. Even though sharp
conclusions cannot be drawn from these tables (especially because of the numerical
inaccuracies of our not too extensive simulations), we have mild evidence that for
moderate sample sizes, under homoskedasticity or skewed data, the Rademacher-wild
procedure can be the preferable choice for performing a FDB analysis. This evidence
holds, even though in an even milder form, for the double bootstrap under the same
conditions. A similar conclusion could not be established for the Ecanciano test.

Based on the same tables, we can observe that the popular wild bootstrap (Mam-
men, 1993) yields balanced and relatively reliable results for the Bierens test (especially

5In the residual bootstrap, the estimated û-s get resampled instead of being “perturbed” by a different,
independent distribution.

6While Davidson and Flachaire (2008) argue for the superiority of the Rademacher distribution over
the more popular distribution of Mammen (1993) for the wild bootstrap, it is not clear how well their
method work for non-symmetric distributions.

13



in the case of heteroskedasticity), and similar conclusions hold for the Escanciano
test. Moreover, its performance in the single bootstrap is adequate compared to the
Rademacher-wild, which does not behave in a desired way, which fact undermines
on-the-spot size comparisons in applied work. Therefore, based on our evidences, it
might be more advisable to employ the Mammen-wild method for performing specifi-
cation tests regardless of the procedure (single, double or fast double bootstrap) being
employed.

We have, thus, argued that Mammen-wild is an appropriate “omnibus” method, even
though for solely the FDB procedure, using the Rademacher-wild might be advisable.
From the casual observation of Figures 3 and 6, we have concluded that the fast double
bootstrap procedure has its place in a specification tester’s toolbox. From the same
graphs we can also argue against the usage of double bootstrap, because (1) its perfor-
mance is often worse than that of the other two procedures and (2) it is computationally
costly on top of that.

However, we have also seen that the single bootstrap does not perform particularly
poorly on the size interval of interest ([0, 0.2]). Hence the question remains, whether
we should actually prefer the fast double bootstrap over the single bootstrap (the two
having nearly similar computation costs). Tables 6, 7, and 8 compare the mean absolute
discrepancy of the FDB (wild) and single bootstrap (wild) for both tests. For homo-
and heteroskedastic data, the fast double bootstrap yields clearly better results for both
tests, but especially for the Bierens test. For skewed data the pattern is not so clear,
but the FDB is not strictly worse than the single bootstrap. However, given that the
Rademacher-wild (FDB) performs better under skewness than the Mammen-wild, we
can also see in the said tables that the Rademacher-wild FDB provides clear advantage
over the single bootstrap under skewed data, for both tests.

4.3. Robustness experiments

Two questions remain to support our results. First, do the double bootstrap and FDB
procedures alter the power curves compared to the single bootstrap in such a way that
we have to take into account the tradeoff between level and power when choosing a
bootstrap procedure? Second, do our results vary in a significant way by altering B1 and
B2?

The answer to the first question is negative: the double and fast double bootstrap
procedures simply shift upwards the power curve yielding higher level and also higher
power under (local) alternatives, and they do not alter the slope of power curves. To
demonstrate this, we conducted the power analysis for the following local alternatives:

yalt = y + d · A(x′γ),

with

A(z) =

{
0.1× (z)2 (quadratic)

0.1× sin(πz) (sine)
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The “direction” γ was chosen to be γ = (1, 2, 3,−2)/
√

18, and the “distance” d was set
d ∈ { 0, 2, 4, . . . , 20 }.7 Note, that the sine alternative is not easy to distinguish from the
linear null. As of now, only the results for Bierens’s test are available, but we do not
expect the conclusions to differ for the Escanciano test The power curves are contained
in Figure 4. The left figure shows the power curve under the quadratic alternative for
n = 75 and for the Mammen-wild. The right figure depicts the power curve for the
Rademacher-wild and for the sine alternative. The nominal level is α = 0.5. Note, that in

Figure 4: Power curve
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the right figure the power curve of the single bootstrap is above the other two procedures.
This is in accord with our conclusions in the previous section: the actual level of the
Rademacher-wild single bootstrap is significantly higher, which is undesirable. Besides
this observation, the pattern holds for all alternative–bootstrap method combinations
and supports out conclusions stated above.

Next we investigated the robustness of our results concerning the double bootstrap
with respect to varying B1 and B2 in relation to each other. Booth and Hall (1994) derive
optimal values establishing that B2 should be a constant multiple of

√
B1. In practice

this means that B2 is advised to be significantly lower than B1, which is not the case
in our experiments above. Figure 5 demonstrates two scenarios for the Bierens test,
Mammen-wild bootstrap and n = 75. In the left figure we let B1 remain equal to 199 as
in the original experiments and we increase B2 to 300 instead of the original 150. In the
right figure, instead of decreasing only B2 to 50, we employ a B1 that is close to being
optimal in relation with B2 = 50 according to Booth and Hall (1994).

The left figure supports the claims of Booth and Hall (1994) in that it shows that
increasing B2 yields even worse results for the double bootstrap. This finding also
supports our results with the setup 150 = B2 < B1 = 199. The right figure indeed

7Note that
√

18 is the norm of the vector (1, 2, 3,−2).
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Figure 5: Bootstrap variations
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improves upon the picture in Figure 3, however, the double bootstrap curve is still above
the fast double bootstrap curve. This finding, therefore, does not alter our conclusions
regarding the double bootstrap. Overall, it can be concluded that varying B1 and B2 in
relation to each other only marginally matters.

5. Conclusion

In the preceding pages we investigated the applicability of the double and fast double
bootstrap procedures on the Bierens and Escanciano test. Section 2. and 3. provided
exposition and theoretical motivation for the question. In Section 4. we used numerical
experiments to investigate this question under various data generating processes. Based
on the experimental evidence we have concluded the following:

1. The Rademacher distribution (Davidson and Flachaire, 2008) for the wild bootstrap
should not be used to single bootstrap the investigated tests.

2. The two point distribution proposed by Mammen (1993) for the wild bootstrap is
an adequate “omnibus” method in the sense that it performs reasonably well for
all considered bootstrap procedures (single, double, and fast double bootstrap). Its
performance is especially good under heteroskedasticity compared to the residual
and Rademacher versions.

3. The Rademacher distribution for the wild bootstrap can outperform the Mammen-
wild bootstrap especially with a non-symmetric error distribution.

4. The double bootstrap should not be used in small and moderate sized samples,
because its performance (in terms of levels) is often worse than that of both the fast

16



double bootstrap and the single bootstrap.

5. The fast double bootstrap can generally be advised to be used for refining inference
over the single bootstrap. Especially if it is coupled with the appropriate wild
distribution. As a thumb rule, with the Mammen-wild method, the FDB performs
no worse than the single bootstrap, and it performs observably better under the
practically important case of heteroskedasticity.

While the above points should be interpreted with care especially because of numerical
inaccuracies, we made all attempt to give conclusions that stem from relatively stable
patterns.
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A. Tables and �gures

Figure 6: Escanciano test simulation
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Figure 7: Residual bootstrap discrepancy
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(a) Bierens

0.00

0.02

0.04

0.00 0.05 0.10 0.15 0.20
Nominal size

S
iz

e 
di

sc
re

pa
nc

y Method

Double

FDouble

Single

Resid, hosked, n = 75

(b) Escanciano

Figure 8: Rademacher (F)DB improvement for the Bierens test
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Table 3: Wild mean absolute size discrepancies for Bierens, homoskedastic data

Sample size (n)

Procedure 40 50 75 100

Residual 0.0080 (0.005) 0.0074 (0.005) 0.0031 (0.003) 0.0092 (0.006)

FDB Wild 0.0063 (0.003) 0.0095 (0.007) 0.0083 (0.004) 0.0088 (0.005)

Rademacher-wild 0.0149 (0.008) 0.0060 (0.002) 0.0061 (0.003) 0.0042 (0.003)

Residual 0.0050 (0.002) 0.0052 (0.003) 0.0105 (0.008) 0.0058 (0.003)

Double Wild 0.0291 (0.013) 0.0278 (0.014) 0.0389 (0.012) 0.0196 (0.006)

Rademacher-wild 0.0203 (0.003) 0.0140 (0.007) 0.0158 (0.003) 0.0194 (0.004)

Standard deviations in parentheses. Calculated from 48 observations on [0, 0.2].

Table 4: Wild mean absolute size discrepancies for Bierens, heteroskedastic data

Sample size (n)

Procedure 40 50 75 100

Residual 0.0231 (0.017) 0.0202 (0.020) 0.0454 (0.026) 0.0498 (0.034)

FDB Wild 0.0196 (0.010) 0.0046 (0.003) 0.0044 (0.004) 0.0041 (0.003)

Rademacher-wild 0.0233 (0.011) 0.0127 (0.007) 0.0174 (0.007) 0.0064 (0.003)

Residual 0.0506 (0.030) 0.0660 (0.035) 0.0591 (0.035) 0.0716 (0.034)

Double Wild 0.0293 (0.016) 0.0236 (0.013) 0.0223 (0.009) 0.0269 (0.012)

Rademacher-wild 0.0320 (0.004) 0.0287 (0.007) 0.0203 (0.006) 0.0154 (0.004)

Standard deviations in parentheses. Calculated from 48 observations on [0, 0.2].

Table 5: Wild mean absolute size discrepancies for Bierens, skewed data

Sample size (n)

Procedure 40 50 75 100

Residual 0.0163 (0.008) 0.0153 (0.009) 0.0163 (0.012) 0.0072 (0.005)

FDB Wild 0.0084 (0.004) 0.0215 (0.014) 0.0138 (0.007) 0.0100 (0.006)

Rademacher-wild 0.0089 (0.004) 0.0056 (0.003) 0.0075 (0.004) 0.0043 (0.002)

Residual 0.0098 (0.005) 0.0039 (0.003) 0.0056 (0.005) 0.0058 (0.003)

Double Wild 0.0144 (0.008) 0.0156 (0.010) 0.0129 (0.007) 0.0306 (0.015)

Rademacher-wild 0.0074 (0.005) 0.0088 (0.004) 0.0166 (0.009) 0.0068 (0.004)

Standard deviations in parentheses. Calculated from 48 observations on [0, 0.2].

22



Table 6: FDB–Single mean absolute size discrepancies, homoskedastic data

Sample size (n)

Procedure 40 50 75 100

Bierens FDB (wild) 0.0063 (0.003) 0.0095 (0.007) 0.0083 (0.004) 0.0088 (0.005)

Single (wild) 0.0199 (0.019) 0.0158 (0.015) 0.0100 (0.009) 0.0118 (0.010)

Escanciano FDB (wild) 0.0307 (0.016) 0.0217 (0.012) 0.0042 (0.003) 0.0033 (0.002)

Single (wild) 0.0287 (0.017) 0.0223 (0.015) 0.0242 (0.012) 0.0149 (0.008)

Standard deviations in parentheses. Calculated from 48 observations on [0, 0.2].

Table 7: FDB–Single mean absolute size discrepancies, heteroskedastic data

Sample size (n)

Procedure 40 50 75 100

Bierens FDB (wild) 0.0196 (0.010) 0.0046 (0.003) 0.0044 (0.004) 0.0041 (0.003)

Single (wild) 0.0209 (0.020) 0.0176 (0.013) 0.0148 (0.008) 0.0120 (0.009)

Escanciano FDB (wild) 0.0219 (0.010) 0.0321 (0.017) 0.0076 (0.004) 0.0093 (0.004)

Single (wild) 0.0291 (0.019) 0.0271 (0.017) 0.0235 (0.014) 0.0231 (0.014)

Standard deviations in parentheses. Calculated from 48 observations on [0, 0.2].

Table 8: FDB–Single mean absolute size discrepancies, skewed data

Sample size (n)

Procedure 40 50 75 100

FDB (Rademach) 0.0089 (0.004) 0.0056 (0.003) 0.0075 (0.004) 0.0043 (0.002)

Bierens FDB (wild) 0.0084 (0.004) 0.0215 (0.014) 0.0138 (0.007) 0.0100 (0.006)

Single (wild) 0.0218 (0.018) 0.0167 (0.011) 0.0134 (0.009) 0.0208 (0.012)

FDB (Rademach) 0.0126 (0.010) 0.0098 (0.008) 0.0025 (0.002) 0.0061 (0.005)

Escanciano FDB (wild) 0.0439 (0.028) 0.0317 (0.020) 0.0326 (0.021) 0.0270 (0.018)

Single (wild) 0.0289 (0.019) 0.0337 (0.018) 0.0374 (0.021) 0.0332 (0.019)

Standard deviations in parentheses. Calculated from 48 observations on [0, 0.2].
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