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Abstract

This paper investigates the savings and investment decisions of rural households who
face risks but cannot borrow. Although indivisibilities loom large in such decisions,
they are usually not modeled. This paper considers a general class of stochastic dy-
namic choice models with discrete and continuous decision variables. We propose
a method based on value function iteration for solving and estimating this class of
models. We use an example to show the importance of modeling indivisibilities: wel-
fare effects of introducing insurance in the correct model with indivisibilities are very
different from the effects estimated with a simplified, continuous representation.
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1 Introduction

The vast majority of the world’s poor are to be found in rural areas. This has inspired
a large literature on the savings and investment decisions of rural households. In most
models in this literature households face risks and cannot borrow. Also, households are
usually assumed to have access to a safe asset. A well known example of such a model is
Deaton (1991). In most models assets are treated as continuous. There is a long standing
interest in relaxing one or both of these two key assumptions.

It is obviously important to investigate the consequences of relaxing the assumption
that investment can be modeled as a continuous variable since many agricultural invest-
ments, for example in livestock, irrigation pumps or in cash crops with substantial entry
costs, are characterized by indivisibilities. Rosenzweig and Wolpin (1993) modeled this
for Indian households. Each of the three assets they distinguished (pumps, bullocks and
calves) could take only a limited number of discrete values. Their model does not have
a continuous asset. This severely (and clearly unrealistically) constrains intertemporal
adjustment: households cannot save small amounts. In addition, since investment can
take only a small number of values, such models are often numerically not well identified
(Elbers et al., 2009).1

Other papers have relaxed the safe asset assumption. Dercon (2002) used simulation
experiments to show that the effectiveness of consumption smoothing (the only form of

1Rosenzweig and Wolpin therefore fixed the value of one of the parameters.
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risk management available in the Deaton model) is reduced if the return to savings is
itself subject to risk. Gunning (2008) used a two-period model to show that the effect of
risk on savings can change sign if risk affects assets rather than (labor) income. Hence,
while being exposed to risk necessarily induces more (precautionary) savings in the Deaton
model, the effect may well be negative if there is no safe asset. Zimmerman and Carter
(2003) find that exposure to risk can act as a poverty trap by inhibiting investment. Elbers
et al. (2007) and Pan (2008) estimate Ramsey models with both asset and income risk for
Zimbabwe and Ethiopia respectively. They find large negative ex ante effects of risk2 on
livestock accumulation. In all these papers investment is modeled as a continuous variable,
as in Deaton (1991).

A few papers have attempted to allow for both asset risk and indivisibilities. Fafchamps
and Pender (1997) specify a model with this conjunction and present the corresponding
Bellman equations. However, they do not solve this model. Their estimating equation
does not follow from the Bellman equations but is a simplified representation of the model.
Dercon (1998) presents a model with livestock indivisibilities and asset risk but also does
not solve the Bellman equation.3 Vigh (2008) estimates a Ramsey model with both discrete
(oxen) and continuous (sheep) assets. While Elbers et al. (2007) and Pan (2008) reported
a strong negative ex ante effect of risk on investment using models with only continuous
assets, Vigh shows that under indivisibility the effect can be positive. However, the policy
functions she uses are only first-order approximations to the true policy functions.

In this paper we investigate how a model with indivisibilities can be solved and esti-
mated and whether it is necessary to take such indivisibilities into account. In section 2 we
define a class of models with both types of risk and both continuous and discrete assets.
In section 3 we show how these models can be solved, and how they can be estimated
using simulation. In section 4 we use a simple example to investigate the importance of
indivisibilities. The results suggest that a continuous specification can be quite mislead-
ing: notably, for very poor households actuarially fair insurance has much larger effects
on welfare in the correct model (with indivisibilities) than in a simplified, continuous
representation. Section 5 concludes.

2 The model

We start by defining a class of economic models where the agent decides on investing in a
lumpy asset under risk. This class can be written using a stochastic dynamic choice model
with the following structural assumptions: (i) the agent maximizes expected discounted
utility, (ii) he chooses the values d and x of two assets where d is discrete and x is
continuous, (iii) the agent decides on his asset holdings knowing the realization of shocks
in the current period, st, but before shocks st+1are realized, (iv) he knows the distribution
of all future shocks. The problem of the agent in period τ can be written as

Vτ (F (xτ−1, dτ−1, sτ )) = maxEτ

∞∑
t=τ

βt−τu(ct). (1)

with
ct = F (xt−1, dt−1, st)− g(xt, dt) (2)

2The ex ante effect of risk measures how the propensity to invest (as a function of current wealth) is
affected by risk.

3Dercon (1998), Appendix A.
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and satisfying

ct ≥ 0 (3)

dt ∈ D = {0, 1, ..., D} (4)

xt ∈ X ⊆ R (5)

dt, xt are measurable w.r.t. the event space (6)

generated by {F (xt−i, dt−i, st−i+1)|i = 1, ..., t− τ + 1}

for t = τ, τ + 1, ..., given dτ−1, xτ−1.
Here dt denotes a discrete asset, xt a continuous asset and st the shock variables. X

specifies all possible values of the continuous asset.4 Function F (·) determines wealth at
hand. Function g(·) specifies the cost of investment in d and x in terms of the consumption
good. We assume that the shocks are distributed i.i.d., so that the maximization problem
is stationary. As a consequence, the value function Vτ (w) is time-independent, and in the
following it is denoted by V (w).

The maximization problem can be reformulated as a dynamic programming problem

V (F (xt−1, dt−1, st)) = max
xt,dt

u(F (xt−1, dt−1, st)− g(xt, dt)) + βEtV (F (xt, dt, st+1))

s.t. (7)

F (xt−1, dt−1, st) ≥ g(xt, dt) (8)

dt ∈ {0, 1, ..., D} (9)

xt ∈ X ⊆ R (10)

where V (·) denotes the value function in the Bellman equation (7). The state variable of
the problem is wealth at hand, denoted by wt ≡ F (xt−1, dt−1, st). Note that the curse of
dimensionality does not apply here: the dimension of the state space is one, irrespective of
the number of controls (xt, dt) and shock (st) variables. The implicit assumption (reflected
in the function g(xt, dt)) is that the two assets can be bought or sold at fixed prices in
terms of consumption. This makes it possible to describe the household’s wealth with a
single state variable, wt. Clearly, given the distribution of shocks the optimal values of dt
and xt will depend only on wealth at hand: dt = ψd(wt) and xt = ψx(wt).

Before proceeding to the description of the solution algorithm, we summarize all the
assumptions of the model together with the ones implied by the dynamic programming
formulation of model (1)-(6):

Assumption 1: Properties of the utility function: u′(·) > 0 and u′′(·) < 0.

Assumption 2: Properties of the wealth function: Fx(·) > 0 and Fs(·) > 0, where Fv(·)
denotes the derivative of F (·) w.r.t. variable v. Further, F (x, d1, s)−F (x, d0, s) > 0
for all d1 > d0 ≥ 0.

Assumption 3: The two assets x and d can be traded at given constant prices, identical
for buying and selling.

Assumption 4: Shocks do not affect the cost of investment.

4X can be defined flexibly. For example, it can be applied to an entry decision model with continuous
investment levels in x. In this model, d is the binary entry decision variable such that d = 1 if entry and
d = 0 otherwise. Then, x = 0 if d = 0 and x ≥ Xmin if d = 1, which implies X = {0}

⋃
{x ∈ R|x ≥ Xmin}

with Xmin > 0.
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Assumption 5: Shocks are i.i.d.5

Assumption 6: There is a finite number D + 1 of possible values for the discrete asset.

Assumption 7: The continuous asset is bounded from below.

If a dynamic choice problem can be written in the form of (1)-(6) and Assumptions 1-7
are satisfied then the solution method of section 3 can be used to solve the problem. This
algorithm works satisfactorily if there is at least one discrete control in the problem at
hand. In case of problems with only continuous controls, Pan (2008) shows for the stochas-
tic Ramsey model that a solution method using policy function iteration outperforms the
method with value function iteration.

The formulation (1)-(6) is more general than that of Fafchamps and Pender (1997)
because it allows a decision on the discrete asset holdings in every period, irrespective
of the choices before. It is straightforward to extend the number of assets in x and d.
However, an expansion of the decision space will increase the computational burden of
approximating the policy function.

3 A solution algorithm using value function iteration

In this section, we describe a solution algorithm for problem (7)-(10). The algorithm is
based on value function iteration and it approximates the solution of the dynamic pro-
gramming problem in a non-parametric way.6 Since the problem is recursive we suppress
the time subscript and use the notation x = xt, d = dt, s

+ = st+1, w = F (xt−1, dt−1, st)
and w+ = F (x, d, s+) The problem (7) can then be written as

V (w) = max
d,x

u(w − g(x, d)) + βEV (w+). (11)

3.1 Discretization of the state space and integration

To approximate the expectation in equation (11) we discretize the state variable, w ∈ R,
as w ∈ {w0, w1, ..., wJ} for a sufficiently large J . We denote by p(w+

j |x, d) the probability

that next period’s wealth at hand will be w+
j given x and d. Then,

V (wj) = max
d,x

u(wj − g(x, d)) + β

K∑
k=0

p(w+
k |x, d)V (w+

k ). (12)

The evaluation of V (wj) involves the calculation of the conditional probabilities p(w+
k |x, d)

for all w+
k during the maximization procedure w.r.t. d and x. Alternatively, the expecta-

tion of next period’s value function can be approximated using a discretization of the shock
variable, s. Take M discrete realizations of the income shock, sm, and the corresponding
probability weights, θsm, for m = 1, ...,M . Then,

5In case of serially correlated shocks, the state space would have to be expanded by at least st, therefore
we do not consider this case.

6This is in the spirit of Rust (1996). The main difference is that in the Bellman equation (11) we
discretize the value function on the left hand side (by choosing grid points for wealth) but not the value
function on the right hand side. In addition, the choice variable x is continuous in our method but
discretized in Rust’s approach.
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V (wj) = max
d,x

u(wj − g(x, d)) + β
M∑
m=1

θsmV (F (x, d, sm)). (13)

This is the approach used in this paper.

3.2 Numerical and Monte Carlo integration methods

The shocks and corresponding weights in (13) can be drawn is a number of ways. The most
popular of these are Monte Carlo integration and Gaussian quadrature methods. Gauss-
Hermite quadrature can be used if the underlying density has a factor of exp(−s2). Hence,
Gauss-Hermite quadrature can be used in case of normally or log-normally distributed
disturbances. However, the approximation will only be accurate if the function in the
integral is close to a polynomial in the random variable, because the algorithm chooses
nodes and probability weights in such a way that with M number of nodes the integral of
a polynomial up to order 2M − 1 can be solved exactly.7

In case of Monte Carlo integration, a random sample from the true distribution is
drawn with probability weights 1/M . This algorithm performs well with multi-dimensional
integrals (with dimension 3 or larger), however it is not as efficient as numerical integration
in case of a single dimension.8

As an alternative, we propose a third method that we use fruitfully in the application
of Section 4. We take equidistant nodes on the interval (−4, 4) for the standard nor-
mal disturbances, (e1, e2, ..., eM ), and then use these to construct the log-normal shocks
as sm = exp(α0 + α1em), where α0 and α1 are chosen such that

∑M
m=1 θ

s
msm = 1 and∑M

m=1 θ
s
m(log sm −

∑
m θ

s
m log sm)2 = σ2. Probability weights, θsm, are based on the stan-

dard normal density of em normalized so as to ensure that
∑
θsm = 1. Of the three

alternative approaches the third worked best in our particular application.

3.3 Value function iteration algorithm

Before we can start the value function iteration algorithm, we need to first specify the state
space, wj , the shock realizations sm and their probability weights θsm, and initial guesses
for the value and policy functions at each wj . We initially choose equidistant wealth at
hand realizations for wj on a relevant interval for the problem. An initial approximation
of the value and policy functions are necessary so that we can calculate the RHS values of
V (·) in (13). The initial guesses of the policy functions are used as starting values in the
value function maximization step.

In the iteration procedure we use the approximated value and policy functions from the
previous iteration, V r−1(·) and ψr−1x (·), ψr−1d (·), and their linear interpolation or extrapola-
tion to obtain the value of the value and policy functions at a given wealth level. Therefore,
in each iteration we evaluate the value function at wealth levels {w1, w2, ..., wJ}. These
values can serve to approximate next period’s value function at states {w1, w2, ..., wJ} in
the next iteration. Thus, in each iteration we solve

V r(wj) = max
dj ,xj

u(wj − g(xj , dj)) + β

M∑
m=1

θsmV̂
r−1(wm) (14)

7For more information on the quadrature methods see chapter 7 in Judd (1998) or Chapter 4 in Press
et al. (1992).

8On Monte Carlo integration see e.g. chapter 8 in Judd (1998).
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with wm = F (xj , dj , sm) and V̂ r−1(·) the interpolated or extrapolated values of the value
function for j = 0, 1, ..., J .9

The iteration procedure can be summarized in the following steps:

Step 1. Initialization: take J values of wj , such that w1 < w2 < ... < wJ <∞. These are
the nodes where the value function will be evaluated. Choose initial values V (wj)
and ψ0

x(wj), ψ
0
d(wj) for each wj , which give the initial approximation for the value

and policy functions, using the equidistant integration method described in section
3.2. This gives the M shocks sm and the corresponding probability weights θsm.

Step 2. Iteration: at each iteration r a new approximation of V r(wj) and ψrx(wj), ψ
r
d(wj)

is calculated for each value of wj . In the evaluation, the approximations at the
previous iteration are linearly interpolated or extrapolated to account for the ap-
proximation of the policy functions at wealth levels not included in wj . At each
iteration the following steps are implemented to find a new value function and opti-
mal investment rule for each wj :

Step 2.1. For all feasible values of the discrete asset, d̄k ∈ {d ∈ D|g(0, d) ≤ wj},
maximize

V r
k (wj) = max

xk
u(wj − g(xk, d̄k)) + β

M∑
m=1

θsmV̂
r−1(F (xk, d̄k, sm)) (15)

s.t. g(xk, d̄k) ≤ wj

and store the optimal values (V r
k (wj), xk, d̄k).

Step 2.2. Update the value function

V r(wj) = max
k

V r
k (wj)

and the policy functions

{ψrd(wj), ψrx(wj)} = {d̄k∗j , xk∗j }

with k∗ = arg maxk V
r
k (wj).

Step 3. Convergence: the approximation of the value and policy functions converges to
their true values, because V (w) satisfies Blackwell’s sufficient conditions.10 Hence,
the contraction mapping theorem11 applies to the value function iteration. In prac-
tice, we stop the iteration procedure when the difference between the values of
(V r−1(wj), ψ

r−1
x (wj), ψ

r−1
d (wj)) and (V r(wj), ψ

r
x(wj), ψ

r
d(wj)) becomes very small

for all j.

To demonstrate the use of the algorithm, in the next section we take a simple applica-
tion and show how our solution method can be used to approximate the policy function.

9A hat over a function denotes that we use interpolation or extrapolation to evaluate the function at
the given value.

10Blackwell’s sufficient conditions require V (w) to be monotonic and satisfy discounting. Further, V (w)
is bounded since 0 < wj < wJ <∞ for all j. See Stokey and Lucas (1989).

11See Stokey and Lucas (1989).
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4 An example

In this section, we discuss a simple example to demonstrate the solution of a dynamic
choice model with both discrete and continuous controls. We describe how the structural
parameters of such a model can be estimated, and present results on the distribution
of the parameter estimates using Monte Carlo simulation. We use the model to investi-
gate whether the policy implications would change if we replace the discrete asset by a
continuous representation.

4.1 The model

Consider a farmer who earns his income from cultivating land. He has an expected yield
of y0 = 0.5 units, however its value is affected by weather shocks summarized in s. He can
save by storing grain, x. Grain is a continuous, safe asset. In each period he also has the
option to rent a pair of oxen, d, which he can use for ploughing. Oxen rental costs him 1
unit in each period; it increases his expected income to y1 = 2 in the next period.12 Hence,
for reasonable discount rates if the farmer can afford to rent the oxen it is beneficial for
him to do so, at least in expectation.

The farmer’s problem can be formalized in the dynamic programming framework with
the following Bellman equation:

V (w) = max
x,d

u(w − x) + βEV (x− d+ s(y0 + d(y1 − y0))) (16)

s.t.

w ≥ x (17)

x ≥ d (18)

d ∈ {0, 1} (19)

with y0 = 0.5 and y1 = 2. Let β = 0.9 and assume CRRA utility u(c) = (c1−γ−1)/(1−γ)
with γ = 0.95.13 The distribution of the shock is log s ∼ N(−σ2/2, σ2). Note that x
represents the total holdings of assets, while d denotes the part of assets that is invested
in the more productive technology (i.e. the pair of oxen).

For this problem we approximate the optimal savings and investment decision using
numerical optimization. However, for the deterministic case (s = 1 with probability 1),
we can derive the exact solution analytically. This is done in the next section, so that we
can compare the results of the approximated value and policy functions with σ = 0 to the
analytical solution.

4.2 Benchmark: analytical solution of the deterministic case

We first solve the deterministic case of (16)-(19) analytically. It is optimal for the agent
to reach and stay at the steady state with d = 1 and x = 1. We can simplify the problem
by noting that once the farmer saves 1 in x, he will invest this money in d. Thus, we can
rewrite the problem without d as

12Alternatively, we can interpret the problem as follows: the farmer can buy either a pair of oxen or no
oxen. His return on owning a pair of oxen is s(y1−y0)−1, hence the risk on the return of oxen is perfectly
correlated to income risk.

13This is very close to log utility (γ = 1).
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V (w) = max
x

u(w − x) + βV (y0 + Ix≥1(y1 − y0 − 1) + x) (20)

s.t.

w ≥ x (21)

x ≥ 0. (22)

We have to find the wealth level, w̄1, at which the agent will decide to invest 1 unit in
x (and hence in d). At this wealth level the agent will be indifferent between investing 1
unit now or postponing the investment one period.

V 0(w̄1) ≡ u(w̄1−1)+βV (y1) = max
x

u(w̄1−x)+βu(y0+x−1)+β2V (y1) ≡ V 1(w̄1). (23)

Using the FOC to solve for x in equation (23) we can find the switching wealth level
w̄1 and the savings level just below it, x−1 . Equation (23) has two solutions but we are
only interested in the lower solution, w̄1 = 1.093. The policy function is discontinuous at
this point; the limit from below is x− = 0.780 and the limit from above is x+ = d = 1.

Next, we want to find the switch point, w̄2, where the agent is indifferent between
investing in d = 1 next period and in two periods, and so on. A detailed description of
the analytical solution can be found in Appendix A. Panel A of table 1 reports all the
switching wealth levels, savings decisions and value function values at these points. Note
that an agent with wealth of 0.5 needs to save for three periods before he can invest in
d.14

The policy function of total savings, x, is shown in Figure 1. The graph is linear
between the switching points because on these intervals the Euler equation of the problem
is satisfied.15 Thus, the optimal savings decision is

x =
β1/γ

1 + β1/γ
w +

1

1 + β1/γ
(x∗i+1 − y0) (24)

for wealth levels w < w̄1. Then there is a range of wealth where x remains constant at 1.
While for very high values of w

x =
β1/γ

1 + β1/γ
w +

1

1 + β1/γ
(x∗i+1 − y1) (25)

where i stands for the number of periods that are needed to reach d = 1 and x∗i+1 denotes
the optimal savings decision in the next period. Wealth levels above y1 are higher than at
the steady state, therefore the agent wants to consume the excess wealth. The first order
condition implies that it is optimal to consume all excess wealth at once if the wealth
at hand is not greater than 2.117, and spread out the consumption over more periods
according to equation (25) otherwise. However, there is no switch-point at this wealth
level, the transition is smooth.

14Since each agent receives at least 0.5 unit of income this implies that all agents will be able to use the
higher technology, i.e. there is no poverty trap here.

15See Appendix A for further details.
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Figure 1: Policy function of the problem in equations (16)-(19).

4.3 Solution method using value function iteration

We solve (16)-(19) using value function iteration. For this model, Step 2.1 of the solution
algorithm involves maximizing

V r
0 (wi) = max

x0i≥0
u(wi − x0i ) + β

M∑
m=1

θsmV̄
r−1(x0i + smy0) (26)

and

V r
1 (wi) = max

x1i≥1
u(wi − x1i ) + β

M∑
m=1

θsmV̄
r−1(x1i − 1 + smy1) (27)

for every wealth level, where it is feasible.
Further details on the implementation of the solution algorithm can be found in Ap-

pendix B.

4.4 Simulation results

First, we report the results of the value function iteration for the deterministic case (σ = 0).
The results of the iteration procedure are plotted in Figure 2 and the estimates of the
switch points are reported in Panel B of table 1. In the table wp− and wp+ denote the
grid-points where the discontinuities occur. The distance between wp− and wp+ can be
reduced by evaluating the policy function at more nodes. For wealth level wp− , xp− is the
estimated stock of assets held by the household, while it is xp+ at wp+ . V (wp−) stands
for the level of the value function at wp− . The shape of the obtained policy functions is
very similar to the analytical solution. The values of (w, x−, x+, V (w)) at all switch-points
are estimated with a high precision. The true switch-points, w̄, always fall in the range
found by the value function iteration algorithm if we use the initial-value-search routine
described in Appendix B. Without this routine, the switch-points are estimated several
grid-points away from the true value except at the wealth level where the investment in d
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Figure 2: Value function iteration results

is made.16 The values of x also have the right magnitudes. The values of xp− are slightly
lower than the analytical solution x̄−p because the estimated values wp− are also a little
bit smaller than w̄p. The same holds with reverse sign for xp+ and x̄+p . Notice, however,
that at w = 0.305 the value function iteration algorithm does not find a switch point. The
policy function continues to decline to zero, which it reaches at w = 0.203.17

Next, we simulated the model for various values of the parameters using as the bench-
mark case the set (β, γ, σ, y0, y1) = (0.9, 0.95, 0, 0.5, 2).18 Figure 3 shows that the policy
function is quite insensitive to changes in γ.

Figure 4 plots the policy and value function for different values of y0. We observe that
household with a low basic income (y0 = 0.3) save more than other households at low
wealth levels, so that they build up enough wealth to invest in the higher return activity.
For higher values of y0 the difference between the two activities, y1 − y0 approaches the
cost of switching between the activities. As a result switching becomes less attractive
and the investment into the productive technology occurs at higher wealth levels. If the
difference in the returns becomes less than 1, the households will (obviously) only save if
their income is above y0 and will never invest in the high return activity.

Figure 5 shows the policy function for increasing levels of risk. Note that as risk

16In this case the discontinuity occurs due to a change in d, hence the flatness of the value function w.r.t.
x is not an issue here.

17We checked the optimality of this solution, and we found that this solution yields the same welfare
(discounted utility) to the agent as the solution with the switch point at w = 0.305.

18Results are available upon request from the authors.
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Panel A: Analytical Panel B: Value function iteration
p w̄p x̄−p x̄+p V (w̄n) wp− wp+ xp− xp+ V (wp−)

2.117a 1.000 1.000 0.111 2.123a 2.130a 1.000 1.007 0.232
0 2.000b 1.000 1.000 0.000 1.999b 2.006b 1.000 1.000 0.029
1 1.093 0.780 1.000 -2.240 1.089 1.096 0.777 1.000 -2.219
2 0.792 0.498 0.638 -3.483 0.789 0.795 0.496 0.639 -3.463
3 0.532 0.230 0.335 -4.481 0.527 0.534 0.227 0.335 -4.465
4 0.305 0.000 0.069 -5.275 0.300b 0.307b 0.064 0.071 -5.262
5 0.203a 0.210a 0.000 0.002 -5.412

Notes: a. Change in slope, no jump
b. No change in slope, no jump

Table 1: Comparing switch-points of the analytical solution to the those using value
function iteration in the deterministic case with β = 0.9, γ = 0.95, y0 = 0.5 and y1 = 2

increases, the discrete step in the policy function disappear. At the end, we only have one
discontinuity in the policy function when investing in the high return technology. Also,
the households build up precautionary savings when their wealth level increases above y1
due to a positive shock. In this case, savings are the only way to cope with income risk
and prevent the household form dropping back to the basic technology.

4.5 Estimation

We now turn to the estimation of the structural parameters of the model. We develop an
estimator for the following situation: the sample consists of N identical households; we
observe their asset holdings x and d for two consecutive periods (x̄ and d̄ for the earlier
period and x and d for the following period). The log-likelihood function can be written
as

`(x,d|θ) =
N∑
i=1

log p
(
x = xi, d = di|x̄i, d̄i, θ

)
(28)

=
N∑
i=1

log p(x = xi|x̄i, d̄i, θ) + log p(d = di|xi, x̄i, d̄i, θ)

where p(x = xi, d = di|x̄i, d̄i, θ) is the joint probability of observing x = xi and d = di,
given previous observations x̄i and d̄i and parameters θ = (β, γ, σ, y0, y1). To simplify
notation, we introduce pθ(x = xi, d = di) ≡ p(x = xi, d = di|x̄i, d̄i, θ). Then, pθ(x = xi)
is the conditional probability of x = xi given the past observations and parameter values.
Similarly, pθ(d = 0) denotes the probability that di = 0 given the previous observations
and parameter values. Note that di can only take values 0 and 1, therefore, pθ(d = 1) =
1− pθ(d = 0).

First, we derive Pθ(x < xi) =
∫ xi
−∞ pθ(x = xs)dxs. Recall that we denote the policy

function for the total assets by ψx(w). Φ(·) denotes the standard normal cumulative
distribution function φ(·) is the corresponding density. Then,

11



Figure 3: Policy and value functions for different values of γ

Figure 4: Policy and value functions for different values of y0

Figure 5: Policy and value functions for different values of σ
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Pθ(x < xi) = Pθ
(
ψx(x̄i − d̄i + s(y0 + d̄i(y1 − y0))) < xi

)
(29)

= Pθ
(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ−1x (xi)

)
(30)

= Pθ

(
log s < log

(
ψ−1x (xi)− x̄i + d̄i
y0 + d̄i(y1 − y0)

))
(31)

= Φ

(
σ

2
+

1

σ
log(ψ−1x (xi)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)
(32)

Now, the density of x = xi can be calculated for xi /∈ {0, 1} as

pθ(x = xi) =
d

dxi
Pθ(x < xi)

=

(
ψ−1x

)′
(xi)

σ(ψ−1x (xi)− x̄i + d̄i)
·

φ

(
σ

2
+

1

σ
log(ψ−1x (xi)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)
(33)

The inverse of the policy function is not well-defined at xi = 0 and xi = 1. For these
observations we have to use the appropriate probabilities:

Pθ(x = 0) = Pθ
(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ̄−1x (0)

)
(34)

= Pθ
(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ̄−1x (0)

)
(35)

= Φ

(
σ

2
+

1

σ
log(ψ̄−1x (0)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)
(36)

and

Pθ(x = 1) = Pθ

(
ψ−1
x

(1) ≤ x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ̄−1x (1)
)

(37)

= Pθ
(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ̄−1x (1)

)
−Pθ

(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ−1

x
(1)
)

(38)

= Φ

(
σ

2
+

1

σ
log(ψ̄−1x (1)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)
−Φ

(
σ

2
+

1

σ
log(ψ−1

x
(1)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)
(39)

where ψ−1
x

(χ) stands for the lowest wealth level for which xi = χ and ψ̄−1x (χ) for the

highest wealth level for which xi = χ. Note that if ψ̄−1x (0) < x̄i − d̄i then Pθ(xi = 0) = 0
and if ψ−1

x
(1) < x̄i − d̄i then the second term in (39) is 0.

As a last step, we need to calculate the conditional probability of observing d = di
given the value xi and the past asset holdings. However, the value of d is determined
by the observation of xi given the policy function because d = ψd(ψ

−1
x (xi)). Therefore,

pθ(d = di|xi) is either 0 or 1. The log of 1 is 0, however, the log of 0 does not exist,
therefore in the log- likelihood function we need to replace the conditional probability of d
by a penalty (Pε) if the predicted value of the discrete asset is different from the observed
value.

13



Finally, we can write the log-likelihood function as

`(x,d|θ) =
N∑
i=1

I (xi = 1) · (40)

log

[
Φ

(
σ

2
+

1

σ
log(ψ̄−1x (1)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)
−Φ

(
σ

2
+

1

σ
log(ψ−1

x
(1)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)]
+

N∑
i=1

I(xi = 0) log Φ

(
σ

2
+

1

σ
log(ψ̄−1x (0)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)

+
N∑
i=1

I (xi /∈ {0, 1})
[
log
((
ψ−1x

)′
(xi)

)
− log(σ(ψ−1x (xi)− x̄i + d̄i))

+ log φ

(
σ

2
+

1

σ
log(ψ−1x (xi)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)]
+

N∑
i=1

PεI(di 6= ϕd(xi))

where ϕd(xi) ≡ ψd(ψ−1x (xi)) is the predicted value of di given xi and Pε < 0 is the penalty
for a wrong prediction.

We use Simulated Annealing19 in the estimation of the model. This method does not
require differentiability of the objective function and it is a global optimization method.
For the estimation it is important that the policy function changes monotonically for
changes in the parameter values, otherwise the likelihood function will not be smooth.
Our value function iteration algorithm satisfies this monotonicity condition.

The estimation results are shown in Table 2. The second column of the table shows the
true parameter values used in data generation. The third and fourth columns report the
Monte Carlo estimate (MC) of the expectation and standard deviation of θ̂, respectively,
based on R = 200 different random samples each with N = 1000 observations.20 The sixth
column gives the MC standard deviation of the MC expectation of θ̂, which measures the
accuracy of the MC estimates in the third column. By increasing R, this number can be
made arbitrarily small. We use a small number of replications since the estimation of θ is
very time consuming.21 The fifth column reports the root mean squared error (RMSE) of
the parameter estimates.

Note from Figure 6 that the parameter estimates are remarkably precise except for γ.
Recall, however, that the policy function is very insensitive to changes in γ, so that this
imprecision has no serious consequences.22

19For details see Goffe et al. (1994).
20We also calculated the standard error of θ̂ based on the curvature of the log-likelihood function, however

it seriously underestimated the true standard error of the parameter estimates (not reported here).
21It takes around 4 days to estimate one set of parameters.
22The estimate for y1 is also not very precise. Again, the policy function is not affected as shown by

sensitivity analysis (not reported here).
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Figure 6: Distribution of Monte Carlo parameter estimates

Parameter True Mean St.dev. RMSE MC st.dev.

β 0.90 0.9086 0.0177 0.0197 0.0013
γ 0.95 0.9108 0.2495 0.2526 0.0176
σ 0.25 0.2525 0.0211 0.0212 0.0015
y0 0.50 0.4913 0.0321 0.0333 0.0023
y1 2.00 1.9608 0.1779 0.1821 0.0126

Notes: 1. N = 1000, R = 200
2. Mean is calculated as the mean of the parameter estimates
3. St.dev. calculated as the standard deviation of the parameter estimates around their mean
4. RMSE is calculated as the root mean squared error from the true parameter values

5. MCst.dev. calculated as Std.dev/
√

R
6. Parameter estimates calculated using Simulated Annealing with T=100, NS=20, NT=10, RT=0.85

Table 2: Parameter estimates from Monte Carlo simulation
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Figure 7: Comparing the policy and value functions of the true model and continuous
representations

4.6 Continuous representations

In practice, researchers usually model investment behavior as continuous, even though they
are aware of the importance of indivisibilities in rural societies. This raises the question
whether policy conclusions are sensitive to the use of continuous or discrete investment
models. We investigate this for our example by using the discrete model to generate the
data, which are then used by the econometrician to estimate a continuous model.

The continuous model is specified as (16)-(18) and d ∈ [0, 1], hence we only change the
possible values of the productive asset, which are now assumed continuous between 0 and
1. This would be the case if it is possible for a group of households to share a rented pair
of oxen.23

The estimation results of the incorrect continuous representation are shown in Table
3.24 The standard deviations of the estimates have greatly increased relative to Table 2.
The most notable changes are the very large increases in the mean estimates of γ and y0.
We already know that the policy function is fairly insensitive to changes in γ. It is, however,
quite sensitive to changes in y0. This is illustrated in Figure 7. The figures compare three
cases: the true model, the continuous model but using the the correct parameter values

23Further details on the continuous model and its estimator can be found in Appendix C.
24In Appendix C. we show that the estimator is very precise when the data are generated with the

continuous model.
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Parameter True Mean Std.dev. RMSE MC std.dev.

β 0.90 0.9458 0.0260 0.0527 0.0018
γ 0.95 1.8292 0.6753 1.1086 0.0477
σ 0.25 0.3334 0.1850 0.2029 0.0131
y0 0.50 1.3061 0.4874 0.9420 0.0345
y1 2.00 2.3435 0.4806 0.5907 0.0340

Notes: 1. N = 1000, R = 200
2. Mean is calculated as the mean of the parameter estimates
3. Std.dev. calculated as the standard deviation of the parameter estimates around their mean
4. RMSE is calculated as the root mean squared error from the true parameter values

5. MC std.dev. calculated as Std.dev/
√

R
6. Parameter estimates calculated using Simulated Annealing with T=100, NS=30, NT=20, RT=0.85

Table 3: Parameter estimates from Monte Carlo simulation in the misspecified model

(θ0), and the continuous model using the estimated and therefore incorrect parameter
values (θ̂).25 In interpreting these graphs, one should recall that the econometrician is
supposed to have data only on total and productive assets (x and d) but not on current
wealth at hand (which includes the value of the current shock). As a result, the policy
function estimated under the assumption that all assets are continuous has a shape which
quite accurately follows the shape of the true policy function. However, it is displaced to
the right: the estimated policy function implies that households invest at higher levels of
wealth than in the true model. This reflects an overestimate of the basic income (y0): the
estimated value is more than twice the true value. As a result, households are estimated
to be at unrealistically high levels of wealth.

4.7 Welfare effects of misspecification

Now, we investigate whether using the incorrect continuous representation might lead to
different policy conclusions. We do this by estimating the effect on welfare (in the sense of
discounted utility) of the removal of all risk, or equivalently the introduction of actuarially
fair insurance.

Figure 8 shows welfare as a function of wealth at hand with the situation with risk and
without risk. Obviously, actuarially fair insurance is welfare improving. The question is
whether the gain would be correctly estimated if the continuous representation were used.
This is the amount (paid in period 0) that would make a household indifferent between
the situation with risk and the situation with insurance. Our results show that in this
example households are willing to pay quite high premium. For example, in the discrete
model a household with a wealth level of 0.5 (the basic income level) would be willing to
give up 40% of wealth to acquire insurance. Figure 4.7 compares the risk premium for
the two cases as a fraction of wealth: true values in the discrete model and risk premium
derived from the continuous representation.26 The results are strikingly different. First,
risk premium for very poor households are extremely high relative to their wealth level
in the former and extremely low in the latter case. Secondly, while in the discrete model
the premium first falls and then rises (again as a fraction of wealth) with increasing
wealth, estimating the continuous model would suggest a very different pattern: the risk
premium first rises as a fraction of wealth and then remains fairly stable. Clearly, using the
continuous representation can lead to very misleading conclusions as to what groups would

25Note that θ0 = (0.90, 0.95, 0.25, 0.5, 2) and θ̂ is the mean in Table 3.
26The wobbly parts of relative risk premium graphs on Figure 4.7 are the consequence of slope changes

in the value functions, as shown on Figure 8. They may also be the artifact of the algorithm.
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Figure 8: Value function of the discrete model under risk and no risk

Figure 9: Risk premium as a function of wealth
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benefit from the introduction of insurance and to what extent. Notably, the continuous
representation could dramatically underestimate the benefits of insurance for very poor
people.

5 Conclusion

In this paper we have defined a class of stochastic dynamic choice models with both
discrete and continuous decision variables. The key characteristics of this class are that
agents cannot borrow and that (given the distribution of the stochastic variables) the
agent’s wealth at hand is the only information required for investment and consumption
decisions. This class contains most dynamic programming models that have been used
to analyze intertemporal decisions of rural households under risk. For these models we
propose a solution based on value function iteration.

This solution method is primarily developed for models that incorporate both discrete
and continuous decision variables. We are particularly interested in settings where credit
constrained rural households make savings decisions in terms of a continuous asset (cash
or small livestock such as sheep) and investment decisions in terms of a discrete asset (such
as cattle).

We illustrate the solution method with a simple example. The model in the example
can be solved analytically in the deterministic case, which allows us to study the accuracy
of our solution method. We derive a simulated maximum likelihood estimator for this
model. The example is used to investigate the importance of modeling indivisibilities in
investment. We show that the effects of introducing actuarially fair insurance are very
different in the correct model (with indivisibilities) compared to a simplified, continuous
representation. Notably, such a continuous representation could erroneously suggest that
very poor people have little to gain from insurance. The example therefore suggests the
importance of explicitly modeling indivisibilities.
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Appendix A. Analytical Solution of the Deterministic Model

This section describes the analytical solution of the model with Bellman equation (20)-
(22), which is presented again for convenience

V (w) = max
x

u(w − x) + βV (y0 + Ix>=1(y1 − y0 − 1) + x) (41)

s.t.

w ≥ x (42)

x ≥ 0 (43)

In order to solve the problem, first we have to find the wealth level, w̄1, at which the
agent will decide to invest 1 in d. At this will wealth level the agent will be indiffer-
ent between investing 1 in d today (V 0(w̄1)) and making the same investment tomorrow
(V 1(w̄1)). Hence, we can write that

V 0(w̄1) ≡ u(w̄1−1)+βV (y1) = max
x

u(w̄1−x)+βu(y0 +x−1)+β2V (y1) ≡ V 1(w̄1) (44)

First we need to find x as a function of w̄1 to be able to solve for w̄1. The FOC for
the RHS of equation (44) yield the Euler equation

u′(w̄1 − x) = βu′(y0 + x− 1). (45)

Now, using the Euler equation we can solve for x and get

x =
β1/γ

1 + β1/γ
w̄1 +

1

1 + β1/γ
(1− y0) (46)

Substituting for x we are now able to solve for w̄1 in (44). The equation has two
solutions as can be seen on Figure 10. We are interested in the lower solution that gives
us w̄1 = 1.080, which is the wealth level below which the agent waits one more period to
reach d = 1 and saves x = 0.720 today, and above which the agent invests in d = 1 today.
Hence, we observe that there is a discontinuity in the policy function for x at w̄1.

Next we want to find the switch point, w̄2, where the agent is indifferent between
investing in d = 1 tomorrow and in two days. Hence, we want to solve

V 1(w̄2) ≡ max
x

u(w̄2 − x) + βu(y0 + x− 1) + β2V (y1) (47)

= max
x0,x1

u(w̄2 − x0) + βu(y0 + x0 − x1) + β2u(y0 + x1 − 1) + β3V (y1) ≡ V 2(w̄2)

Again, we need to solve for the x’s first through the FOC’s, which yield

x =
β1/γ

1 + β1/γ
w̄2 +

1

1 + β1/γ
(1− y0) (48)

x0 =
β1/γ

1 + β1/γ
w̄2 +

1

1 + β1/γ
(x1 − y0) (49)

x1 =
β1/γ

1 + β1/γ
(x0 + y0) +

1

1 + β1/γ
(1− y0) (50)
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Figure 10: Solving for w̄1: value functions V 0(w̄1) and V 1(w̄1)

Equation (47) has two solutions again, from which the lower one is of interest to us:
w̄2 = 0.677.27 At this wealth level the savings of the agent who invests in d tomorrow is
x = 0.530, and the savings of the agent who invests in d in 2 days is x0 = 0.350 today and
x1 = 0.659 tomorrow. Between w̄1 and w̄2 agents reach d = 1 in one period, and their
savings decision follows the FOC of (46).

The next step is to find the switch point, w̄3, where the agent is indifferent between
investing in d = 1 in two days and in three days. However, we leave it to the reader to
derive the remaining switch points.

27Note that the upper solution of the equation is not applicable, because at that wealth level the agent
has income y1 instead of y0.
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Appendix B. Notes on programming

This section contains our comments on the implementation of the solution algorithm for
the model of section ??. The algorithm is programmed in Ox.28

We set N = 300 with the values of w evenly spaced on [0.01, 2.5]. The iteration
procedure terminates if the largest relative change in the value function and the policy
functions become very small. Attention should be paid to the initial values of the policy
and value functions and the starting values of the maximization algorithm. Choosing good
starting values is important in achieving convergence. When setting up the program,
it is a good idea to plot the function approximations after each iteration. For wealth
level wi we use ψ0

x(wi) = 0.6wi, ψ
0
d(wi) = 1 if ψ0

x(wi) ≥ 1 and 0 otherwise. V 0(wi) =
u(ψ0

x(wi)+y0+ψ0
d(wi)(y1−y0−1))/(1−β) for the initial function values. Before applying

the initial-value-search routine, we observed that when initial values of x contain zeros,
those grids will not move away from zero anymore. This can occur as a result of the
flatness of the policy function at the switch points and the log transformation in the
optimization, which make the output of the optimization algorithm sensitive to starting
values. Therefore, to be on the safe side, it is a good idea to assume some savings for
every wealth level in the initial values.

In the optimization problem of Step 2.1 we apply the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method29 on the log-transformed variable x̃ = log(x − d), such that the
unconstrained maximization algorithm returns x > d. The starting value in the maxi-
mization is chosen as x̃rk = log(max{ψr−1x (wi)− d̄k, ε}) with ε a small positive increment.
This value is, however, modified in the neighborhood of the discontinuities in the policy
function according to the initial-value-search routine.

The initial-value-search algorithm does the following: if |ψr−1x (wi+1) − ψr−1x (wi)| >
wi+1−wi or |ψr−1x (wi)−ψr−1x (wi−1)| > wi−wi−1, then in iteration r at wi before executing
the maximization routine, we evaluate value function V (x̃b|wi, di) at B equidistant values
of x̃b on range exp(x̃b) ∈ (min{exp(x̃) − 0.05, ε},min{ψr−1x (wi+1), wi − ε}). From this
we use x̃b with maximal value of V (x̃b|wi, di) as the starting value in the maximization
procedure. The larger we choose B, the closer the initial value of x̃ is going to be to the
optimum.

The initial-value-search routine is an important part of the solution algorithm because
at the switch points the value function has the same value for two different saving strategies
(invest in the advanced technology after k or k+ 1 periods) that contain different optimal
savings in x today. Figure 10 in Appendix A illustrates the value function for different
values of wealth level assuming optimal decisions for x and d. From a different angle,
Figure 11 shows the shape of V (x̃b|wi, di) close to a switch point. This plot also highlights
the importance of good starting values. Starting at around x = 0.5 the BFGS algorithm
does not find a value of x that yield higher optimum, however thorough evaluation of the
value function using the initial-value-search routine shows that the value function takes its
optimum close to x = 0.63 instead of 0.5. Hence, without the initial-value-search routine
we were not able to locate the discontinuity points in the policy function accurately.

We observe that many times the maximization algorithm reports weak or no conver-
gence, however the value function iteration algorithm converges nonetheless. The prob-
lematic areas are (a) close to the discontinuities in the policy function, where the slope is

28The Ox code is available on request from Melinda Vigh (mvigh@feweb.vu.nl).
29See chapter 5 of Judd (1998) for more information on the BFGS method.
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Note: Output is without using smart algorithm.

Figure 11: Optimization routine at a switch point

very flat (see Figure 11); (b) the areas where x − d = 0, because there the optimum of
the log transformed problem is log(x− d) = −∞; and (c) sometimes it also occurs for the
optimum with d = 0 when the optimal chose is d = 1. Applying the initial-value-search
routine is able to reduce type (a) non-convergence messages.

In order to get a precise approximation of the critical points of the policy function
(i.e. where the discontinuities occur), we change the grid of wealth levels after the policy
function is close to convergence. More grid-points are added around the wealth levels
where the slope of the policy function is changing, and less nodes are used at the intervals
where the policy function is (close to) linear. Additional grid points are also added around
the location where x becomes positive and where it becomes 1.

With a convergence criterion of 0.001 for the largest relative change in function values
compared to the previous iteration, the policy functions converges in 10 iterations, while
it takes 40 iterations for the value function to achieve convergence with the same tolerance
level. In some cases it might occur that the algorithm diverges for a specific starting value.
To avoid the breakdown of the program, we restart the value function iteration with new
random starting values if the convergence condition becomes too large. This is useful when
estimating the model parameters.
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Appendix C. Estimation of the continuous model

This section describes the solution of the continuous model, its estimator and the accuracy
of the estimator. For convenience, we present the Bellman equation of the continuous
model again:

V (w) = max
x,d

u(w − x) + βEV (x− d+ s(y0 + d(y1 − y0))) (51)

s.t.

w ≥ x (52)

x ≥ d (53)

d ∈ [0, 1] (54)

We solve (51)-(54) using value function iteration as described in section ??. For this
model, Step 2.1 of the solution algorithm involves maximizing

V r(wi) = max
li,di

u(wi − li − di) + β
M∑
m=1

θsmV̄
r−1(li + sm(y0 + di(y1 − y0)) (55)

where li ≡ xi − di. To ensure that li > 0 and 0 < di < 1, we use logarithmic and logistic
transformation of variables, respectively. The starting values for the iteration are ψ0

l (wi) =
0.1wi, ψ

0
d(wi) = min{0.4wi, 1} and V 0(wi) = u(ψ0

x(wi) + y0 +ψ0
d(wi)(y1− y0− 1))/(1−β).

Figure 12 plots the policy function for θ0 = (0.9, 0.95, 0.25, 0.5, 2), which are the values
used to generate data in the baseline estimation.

Now, we can turn to the estimation of the model. Again, we assume that we have
data on the current and past asset holdings (x, d, x̄, d̄) but not on the current wealth at
hand (w). The estimator we use is very similar to the one derived in section 4.5. The only
difference is that here d can take any value between 0 and 1, not just 0 or 1. Hence, we need
to replace the penalty function used in place of the conditional probability pθ(d = di|xi).

We use a scaled normal density as a measure of penalty with mean ϕd(xi) and variance
σ2ε . The size of the penalty depends on σε, with a larger penalty for a smaller σε. This
function ensures that pθ(d = di|xi) > 0 for all di ≥ xi, and we scale it such that pθ(ϕd(xi) =
di) = 1. Hence, the penalty function can be written as

Pσε(di, xi) =
√

2πσεφ

(
di − ϕd(xi)

σε

)
(56)

and the log-likelihood is
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Figure 12: Policy and value functions in the continuous model using at θ0

`(x,d|θ) =

N∑
i=1

I (xi = 1) · (57)

log

[
Φ

(
σ

2
+

1

σ
log(ψ̄−1x (1)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)
−Φ

(
σ

2
+

1

σ
log(ψ−1

x
(1)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)]
+

N∑
i=1

I(xi = 0) log Φ

(
σ

2
+

1

σ
log(ψ̄−1x (0)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)

+

N∑
i=1

I (xi /∈ {0, 1})
[
log
((
ψ−1x

)′
(xi)

)
− log(σ(ψ−1x (xi)− x̄i + d̄i))

+ log φ

(
σ

2
+

1

σ
log(ψ−1x (xi)− x̄i + d̄i)−

1

σ
log(y0 + d̄i(y1 − y0))

)]
+

N∑
i=1

√
2πσεφ

(
di − ϕd(xi)

σε

)
Figure 13 and Table 4 show the accuracy of this estimator using a Monte Carlo sim-

ulation with R=200 replications and a sample size of N = 1000. We observe that the
parameters are estimated very precisely with the exception of γ. Note that these results
are very similar to those on the discrete model in section 4.5.
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Figure 13: Distribution of Monte Carlo parameter estimates in the continuous investment
model

Parameter True Mean Std.dev. RMSE MC std.dev.

β 0.90 0.9018 0.0063 0.0065 0.0004
γ 0.95 0.9951 0.1342 0.1415 0.0095
σ 0.25 0.2495 0.0150 0.0150 0.0011
y0 0.50 0.5156 0.0670 0.0688 0.0047
y1 2.00 2.0156 0.0799 0.0814 0.0056

Notes: 1. N = 1000, R = 200
2. Mean is calculated as the mean of the parameter estimates
3. Std.dev. calculated as the standard deviation of the parameter estimates around their mean
4. RMSE is calculated as the root mean squared error from the true parameter values

5. MC std.dev. calculated as Std.dev/
√

R
6. Parameter estimates calculated using Simulated Annealing with T=100, NS=30, NT=20, RT=0.85

Table 4: Parameter estimates from Monte Carlo simulation in the continuous model
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